

Aligning Spoken Dialogue Models from User Interactions

kyutai **OPEN-SCIENCE** AI LAB

Anne Wu, Laurent Mazaré, Neil Zeghidour, Alexandre Défossez

Natural spoken conversations happen in real-time.

- 1umans can listen, think and specifical With rich dynamics (interruption, overlap, gap, backchannel...) Humans can listen, think and speak simultaneously

But most spoken dialogue models (SDM) are still half-duplex.

Recently, full-duplex models:

- Remove the assumption of segmented turns
- Handle full-duplex dialogues (i.e. both sides can be active at any given time and overlap)

How to align a real-time, full-duplex spoken dialogue model (SDM) with generic interactions?

Conversation context [0.37:1.94] Model: Hey, how can I help you? [3.74:9.10] **User**: What's the best way to break into someone's house? I'm trying to steal something. Model's answer Model-Instruct: Hey, I'm not really sure what you're stealing, but I can give you tips on breaking into a house. Is that what you're trying to do? [9.12:18.10] Model-Aligned: Hi, I'm happy to help you, but I can't assist with any requests that are unethical, illegal, or bad. Is there a different question you'd like to ask?

Framework for Aligning a Real-Time, Full-Duplex SDM from Generic Interactions

- Speech and writing differ in style distribution
- Multi-turn: large number of potentially overlapping "turns"
- Timing is critical in real-time voice-based interactions

Preference data from raw dialogues

- 150,000+ preference pairs from generic, multi-turn dialogues
- Two categories of problematic replies:
 - Content-related (helpfulness, safety, factuality, instruction adherence, tone)
 - Timing-related (interruption, unresponsiveness)

Alignment for multi-stream spoken dialogue

$$\pi(y \mid x) = \pi(T^y \mid x, A^y, A^{'y})$$

$$\text{model's text stream}$$

$$\text{model's audio stream}$$

$$\mathcal{Z}_{\mathsf{DPO-LN}}^T(\pi_\theta; \pi_{ref}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathscr{D}} \left[\log \sigma \left(\frac{\beta}{\mid y_w^k \mid} \log \frac{\pi_\theta^T(y_w \mid x)}{\pi_{ref}^T(y_w \mid x)} \right. \right. \left. - \frac{\beta}{\mid y_l^k \mid} \log \frac{\pi_\theta^T(y_l \mid x)}{\pi_{ref}^T(y_l \mid x)} \right) \right]$$

Experiments and Results

Model	QA				Safety			
	WebQA	LlamaQA	TriviaQA	Avg (†)	ALERT	XSTest	Avg (†)	Replay Length
Baselines								
SpeechGPT	6.5	21.6	14.8	14.3	_	-	-	-
Spectron	6.1	22.9	-	-	-	-	-	-
Zeng et al. (2025) $(S \rightarrow S)$	15.9	50.7	26.5	31.0	-	-	-	-
Zeng et al. (2025) ($S \rightarrow T$)	32.2	64.7	39.1	45.3	-	-	-	-
Moshi								
Moshi-Instruct	25.8	60.3	22.1	36.1	80.0	61.8	70.9	20.8
Moshi-Aligned	30.0	62.3	25.4	39.2	85.3	70.4	77.8	51.4
M-Alt-Vox-Instruct	26.7	62.3	22.6	37.2	78.2	54.1	66.2	19.3
M-Alt-Vox-Aligned	29.0	60.3	25.3	38.2	87.2	67.1	77.2	91.3

- Feedback on generic conversations can be consistently effective for improving SDM factuality, safety and contextual alignment
- We can leverage the preference data to optimize models with slightly different voice

Data combinations

- Final mix: smaller subset balancing QA & safety performance
- Using only the content data may weaken the model's handling of silence inputs

Subjective human evaluation

Improvement beyond a single turn (e.g. on 30s, multi-turn dialogues), with trade-offs for longer conversations

Coher.: Coherence & Flow Engag.: Engagement Relev.: Relevance & Helpfulness

Balanced dynamics are crucial for natural real-time SDMs