

IilGym: Natural Language Visual Reasoning with Reinforcement Learning

Anne Wu, Kianté Brantley, Noriyuki Kojima, and Yoav Artzi

https://lil.nlp.cornell.edu/lilgym

Statement

lilGym is a new RL benchmark for studying natural language visual reasoning with interaction

- Human-written highly-compositional natural language with diverse reasoning challenges
- Each statement describes a large set of valid goal **states**, creating a reward computation challenge
- Policy must learn complex language-conditioned goal equivalence to generalize well
- Contemporary methods show non-trivial

Goal: Manipulate an image to satisfy a target boolean value with respect to an input statement

Rollout

performance, but remain far from human performance

Designing *lil***Gym:** Making NLVR Interactive

NLVR (Suhr et al. 2017) is a supervised benchmark for visual reasoning with rich compositional reasoning

Tower-Scratch	Tower-FlipIt	Scatter-FlipIt
There is a blue block as the base of a tower with only two blocks	There is no black block as the top of a tower with at most three blocks	There is a grey box where none of the black objects are touching the edge
TRUE	TRUE	FALSE
•		
	Scatter-Scratch	
	One of the grey box has exactly six objects	
	TRUE	

• Target boolean: always true

• Goal: flip boolean value • Target boolean: true or false

Annotation for Reward Computation

Key challenge: evaluating a state's correctness requires resolving language meaning

Solution: annotate all 2,661 statements with executable formal meaning representations

Example of Language Statement Annotation

Statement:

Experiments and Results

• Scatter: simplified 5×19 grid • Models: C3+BERT (CNN + BERT) and ViLT • Learning algorithms: PPO and PPO+SF

PPO+SF w/C3+BERT

PPO w/ViLT

Expert

Random

PPO+SF w/ViLT

the grey box with least number of objects contains only one black object

Python program annotation: count(filter obj(min(all boxes, key=lambda x: count(x)).all_items_in_box(), lambda y: is_black(y))) == 1

More in the paper

- Finer-grained analysis and rollout statistics (trajectory length, action types, etc.)
- Semantic and syntactic analysis
- Analysis of error patterns

- Various levels of difficulty
- Overall: non-trivial performance

PPO w/C3+BERT

• Stop forcing (PPO+SF) helps: illustrates the exploration challenge

- Scatter-Scratch Reward shows similar trends to accuracy Gap to expert illustrates a long way to go • Random policy: shows task difficulty - PPO w/C3+BERT - PPO w/ViLT — PPO+SF w/ViLT PPO+SF w/C3+BERT
 - -- C3+BERT w/NLVR reward ViLT w/NLVR reward
 - Alternative reward using NLVR images shows no effective learning Exact reward computation is critical, especially with the large set of valid goal states